terça-feira, 31 de dezembro de 2013
segunda-feira, 30 de dezembro de 2013
quarta-feira, 25 de dezembro de 2013
quinta-feira, 19 de dezembro de 2013
segunda-feira, 16 de dezembro de 2013
sexta-feira, 13 de dezembro de 2013
quinta-feira, 12 de dezembro de 2013
sexta-feira, 6 de dezembro de 2013
quarta-feira, 4 de dezembro de 2013
terça-feira, 3 de dezembro de 2013
Italy: La Maiella. Faults.
http://en.wikipedia.org/wiki/Fault_%28geology%29
In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes.
A fault line is the surface trace of a fault, the line of intersection between the fault plane and the Earth's surface.[1]
Since faults do not usually consist of a single, clean fracture, geologists use the term fault zone when referring to the zone of complex deformation associated with the fault plane.
The two sides of a non-vertical fault are known as the hanging wall and footwall. By definition, the hanging wall occurs above the fault plane and the footwall occurs below the fault.[2] This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall hanging above him.[3]
http://geology.gsapubs.org/content/31/1/11.abstract
Formation and growth of normal faults in carbonates within a compressive environment
Normal faults were initiated and grew through hierarchical formation of pressure-solution structures and their subsequent shearing in Cretaceous carbonates in the leading thrust front of Maiella Mountain, Italy. Through mapping in the field, we have documented the detailed architecture of faults with increasing slip values from a few millimeters to ∼50 m and have identified pretilting structural elements and four stages of fault development, each stage representing addition of a new structural element. The result is a conceptual model that begins with pretilting structures (bed-parallel and bed-perpendicular solution surfaces) that were reactivated in shear upon tilting of the beds at the frontal limb of the Maiella anticline. Slip on mechanical-layer boundaries and on bed-perpendicular solution surfaces resulted in oblique solution surfaces, linkage of solution surfaces, and fragmentation of rock. Oblique zones of fragmented rock in adjacent mechanical layers linked to form a continuous breccia and facilitated fault growth. These normal faults formed through mechanical processes strictly in a compressional regime.
In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes.
A fault line is the surface trace of a fault, the line of intersection between the fault plane and the Earth's surface.[1]
Since faults do not usually consist of a single, clean fracture, geologists use the term fault zone when referring to the zone of complex deformation associated with the fault plane.
The two sides of a non-vertical fault are known as the hanging wall and footwall. By definition, the hanging wall occurs above the fault plane and the footwall occurs below the fault.[2] This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall hanging above him.[3]
http://geology.gsapubs.org/content/31/1/11.abstract
Formation and growth of normal faults in carbonates within a compressive environment
Normal faults were initiated and grew through hierarchical formation of pressure-solution structures and their subsequent shearing in Cretaceous carbonates in the leading thrust front of Maiella Mountain, Italy. Through mapping in the field, we have documented the detailed architecture of faults with increasing slip values from a few millimeters to ∼50 m and have identified pretilting structural elements and four stages of fault development, each stage representing addition of a new structural element. The result is a conceptual model that begins with pretilting structures (bed-parallel and bed-perpendicular solution surfaces) that were reactivated in shear upon tilting of the beds at the frontal limb of the Maiella anticline. Slip on mechanical-layer boundaries and on bed-perpendicular solution surfaces resulted in oblique solution surfaces, linkage of solution surfaces, and fragmentation of rock. Oblique zones of fragmented rock in adjacent mechanical layers linked to form a continuous breccia and facilitated fault growth. These normal faults formed through mechanical processes strictly in a compressional regime.
Italy: La Maiella.
http://en.wikipedia.org/wiki/Maiella
The Maiella (or Majella) is a massif in the Central Apennines, in Abruzzo, central Italy, at the boundary between the provinces of Chieti, Pescara and L'Aquila.
The highest peak is Monte Amaro at 2,793 m, the second highest of the entire Apennine range. The massif is at the center of the Maiella National Park.
The Maiella is formed by a compact limestone massif, on which summit are the highest peaks in the group: Monte Amaro 2,793 m, Monte Acquaviva 2,737 m, Monte Focalone 2,676 m, Monte Rotondo 2,656 m, Monte Macellaro 2,646 m, Pesco Falcone 2,546 m, Cima delle Murelle 2,598 m.
Vast plateaus are present up to 2,500 m. The slopes are characterized by steep valleys and gorges, carved out by rivers such as the Orfento, the Foro and others.
Nearby are the Monte Morrone, Monte Porrara and Monti Pizzi groups. The Maiella includes an iced waterfall, known as Il Principiante, located at 1,600 meters and having a height of 25 meters.
The area of the Montagna della Maiella has been subject to a major international geoscientific research Project, TaskForceMajella from 1998 up to 2005.
The Maiella (or Majella) is a massif in the Central Apennines, in Abruzzo, central Italy, at the boundary between the provinces of Chieti, Pescara and L'Aquila.
The highest peak is Monte Amaro at 2,793 m, the second highest of the entire Apennine range. The massif is at the center of the Maiella National Park.
The Maiella is formed by a compact limestone massif, on which summit are the highest peaks in the group: Monte Amaro 2,793 m, Monte Acquaviva 2,737 m, Monte Focalone 2,676 m, Monte Rotondo 2,656 m, Monte Macellaro 2,646 m, Pesco Falcone 2,546 m, Cima delle Murelle 2,598 m.
Vast plateaus are present up to 2,500 m. The slopes are characterized by steep valleys and gorges, carved out by rivers such as the Orfento, the Foro and others.
Nearby are the Monte Morrone, Monte Porrara and Monti Pizzi groups. The Maiella includes an iced waterfall, known as Il Principiante, located at 1,600 meters and having a height of 25 meters.
The area of the Montagna della Maiella has been subject to a major international geoscientific research Project, TaskForceMajella from 1998 up to 2005.
segunda-feira, 2 de dezembro de 2013
Italia: geografia.
As
vantagens naturais do lugar foram claramente reconhecidas pelos próprios
romanos. Tito Lívio diz num discurso que ele pôs na boca de Camilo:
"Não
sem razão, deuses e homens escolheram este lugar como localização de
nossa cidade: as salubres colinas, o rio que nos traz os produtos do
interior do país e o comércio marírimo do estrangeiro, o mar mesmo,
suficientemente próximo para nossa comodidade e sem que sua excessiva
proximidade nos exponha ao perigo das frotas estrangeiras, nossa
localização no próprio coração da Itália... todas essas vantagens fazem
deste o melhor lugar do mundo para uma cidade destinada a grandeza"
(Tito Livio, 5.54.4).
Buff-necked Ibis Theristicus caudatus. Vocalização.
Brasilia, Brazil, série Curicaca
http://www.flickr.com/photos/flaviocb/7841763996/in/photostream/
Buff-necked Ibis Theristicus caudatus
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3782
Video
http://videoaves.com/videos.php?id=149&esp=46
Vocalização de várias aves (não inclui a Curicaca)
http://www.xeno-canto.org/all_species.php
Vocalização de Curicaca
http://videoaves.com/videos.php?esp=46&id=151
http://www.flickr.com/photos/flaviocb/7841763996/in/photostream/
Buff-necked Ibis Theristicus caudatus
http://www.birdlife.org/datazone/speciesfactsheet.php?id=3782
Video
http://videoaves.com/videos.php?id=149&esp=46
Vocalização de várias aves (não inclui a Curicaca)
http://www.xeno-canto.org/all_species.php
Vocalização de Curicaca
http://videoaves.com/videos.php?esp=46&id=151
South America Biodiversity: Theristictus caudadus. Ibis fly. Curicaca.
http://en.wikipedia.org/wiki/File:CURICACA_%28_Theristicus_caudatus_%29.jpg
The Buff-necked Ibis lives in a wide range of open habitats, including fields, marshes, savanna and grassland. There are two primary populations; the nominate subspecies is found across northern and central South America in Colombia, Venezuela, the Guianas and Brazil, while the very similar subspecies hyperorius is found in south-central South America in southern Brazil, eastern and northern Bolivia, Paraguay, Uruguay, and northern Argentina. It is almost entirely restricted to tropical and warmer subtropical lowlands, but very locally it extends into highlands (though never as high as the Andean Ibis). It is almost entirely resident, although local movements may occur. It has been recorded as an accidental visitor in Panama.
With a large range and an estimated population of 25,000 to 100,000, the Buff-necked Ibis is evaluated as Least Concern on the IUCN Red List of threatened Species.
See IBIS fly
http://farm4.staticflickr.com/3712/10984198043_783b07a8f5.jpg
Brazil Biodiversity: Curicaca em Viamão, Rio Grande do Sul.
http://ong.portoweb.com.br/curicaca/default.php?p_secao=119
Reconhecimento dos microcorredores por instituições públicas e instrumentos de planejamento e gestão territorial; Qualificação e mobilização 40 professores de escolas públicas para a educação ambiental, envolvendo 18 escolas de cinco municípios; Sensibilização continuada de cerca de 400 crianças para temas geradores ambientais, culturais e sócio-econômicos relacionados ao funcionamento dos microcorredores; Surgimentos de novos projetos ambientais, educativos, culturais e sócio-econômicos como desdobramentos das parcerias institucionais e dos professores envolvidos; Fortalecimento do conselho do Parque Estadual de Itapeva; Ampliação da participação de técnicos e instituições nas ações regionais de conservação e desenvolvimento sustentável.
Produtos disponíveis: Diagnóstico da região dos microcorredores (digital); Mapa dos microcorredores ecológicos (digital); planejamento estratégico dos microcorredores (livro impresso e digital); Shapes dos microcorredores e dos alvos de conservação.
Parceiros: UFRGS, FEPAM, IPHAE, EMATER, Comando Ambiental da Brigada Militar, Prefeituras Municipais de Dom Pedro de Alcântara e Arroio do Sal, Secretarias Municipais de Educação de Torres, Morrinhos do Sul e Mampituba, ONG Onda Verde.
Financiadores: Ministério do meio Ambiente e a Cooperação Alemã KfW/GTZ, por meio do PDA.
Reconhecimento dos microcorredores por instituições públicas e instrumentos de planejamento e gestão territorial; Qualificação e mobilização 40 professores de escolas públicas para a educação ambiental, envolvendo 18 escolas de cinco municípios; Sensibilização continuada de cerca de 400 crianças para temas geradores ambientais, culturais e sócio-econômicos relacionados ao funcionamento dos microcorredores; Surgimentos de novos projetos ambientais, educativos, culturais e sócio-econômicos como desdobramentos das parcerias institucionais e dos professores envolvidos; Fortalecimento do conselho do Parque Estadual de Itapeva; Ampliação da participação de técnicos e instituições nas ações regionais de conservação e desenvolvimento sustentável.
Produtos disponíveis: Diagnóstico da região dos microcorredores (digital); Mapa dos microcorredores ecológicos (digital); planejamento estratégico dos microcorredores (livro impresso e digital); Shapes dos microcorredores e dos alvos de conservação.
Parceiros: UFRGS, FEPAM, IPHAE, EMATER, Comando Ambiental da Brigada Militar, Prefeituras Municipais de Dom Pedro de Alcântara e Arroio do Sal, Secretarias Municipais de Educação de Torres, Morrinhos do Sul e Mampituba, ONG Onda Verde.
Financiadores: Ministério do meio Ambiente e a Cooperação Alemã KfW/GTZ, por meio do PDA.
domingo, 1 de dezembro de 2013
Brazil Biodiversity: zonas costeira e marinha, avaliação e ações prioritárias para a conservação da biodiversidade. Ministério do Meio Ambiente. 1999.
No III Congresso Mundial de Parques, realizado em Bali, em 1982, foram
discutidas questões relativas a conservação da biodiversidade e a expansão
do número de áreas protegidas no mundo foi uma estratégia considerada
importante. Isto foi reforçado, na Convenção sobre Diversidade Biológica onde
“um sistema adequado de áreas protegidas é considerado vital para o
desenvolvimento de estratégias nacionais de conservação da diversidade
biológica.” (Fonsecaet al.,1998).
Assinar:
Postagens (Atom)